Weighted Norm Inequalities, Off-diagonal Estimates and Elliptic Operators. Part Iv: Riesz Transforms on Manifolds and Weights Pascal Auscher and José

نویسنده

  • MARÍA MARTELL
چکیده

This is the fourth article of our series. Here, we study weighted norm inequalities for the Riesz transform of the Laplace-Beltrami operator on Riemannian manifolds and of subelliptic sum of squares on Lie groups, under the doubling volume property and Gaussian upper bounds. Math. Z. 260 (2008), no. 3, 527--539

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weighted Norm Inequalities, Off-diagonal Estimates and Elliptic Operators Part Iii: Harmonic Analysis of Elliptic Operators Pascal Auscher and José

This is the third part of a series of four articles on weighted norm inequalities, off-diagonal estimates and elliptic operators. For L in some class of elliptic operators, we study weighted norm L inequalities for singular “non-integral” operators arising from L ; those are the operators φ(L) for bounded holomorphic functions φ, the Riesz transforms ∇L−1/2 (or (−∆)1/2L−1/2) and its inverse L1/...

متن کامل

Weighted Norm Inequalities, Off-diagonal Estimates and Elliptic Operators Part Ii: Off-diagonal Estimates on Spaces of Homogeneous Type Pascal Auscher and José

This is the second part of a series of four articles on weighted norm inequalities, off-diagonal estimates and elliptic operators. We consider a substitute to the notion of pointwise bounds for kernels of operators which usually is a measure of decay. This substitute is that of off-diagonal estimates expressed in terms of local and scale invariant L − L estimates. We propose a definition in spa...

متن کامل

Part Ii: Off-diagonal Estimates on Spaces of Homogeneous Type Pascal Auscher and José María Martell

This is the second part of a series of four articles on weighted norm inequalities, off-diagonal estimates and elliptic operators. We consider a substitute to the notion of pointwise bounds for kernels of operators which usually is a measure of decay. This substitute is that of off-diagonal estimates expressed in terms of local and scale invariant L − L estimates. We propose a definition in spa...

متن کامل

Weighted Norm Inequalities, Off-diagonal Estimates and Elliptic Operators Part I: General Operator Theory and Weights Pascal Auscher and José

This is the first part of a series of four articles. In this work, we are interested in weighted norm estimates. We put the emphasis on two results of different nature: one is based on a good-λ inequality with two parameters and the other uses Calderón-Zygmund decomposition. These results apply well to singular “non-integral” operators and their commutators with bounded mean oscillation functio...

متن کامل

2 8 M ar 2 00 6 WEIGHTED NORM INEQUALITIES , OFF - DIAGONAL ESTIMATES AND ELLIPTIC OPERATORS

This is the third part of a series of four articles on weighted norm inequalities, off-diagonal estimates and elliptic operators. For L in some class of elliptic operators, we study weighted norm L inequalities for singular “non-integral” operators arising from L ; those are the operators φ(L) for bounded holomorphic functions φ, the Riesz transforms ∇L−1/2 (or (−∆)1/2L−1/2) and its inverse L1/...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008